首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92343篇
  免费   9424篇
  国内免费   5405篇
电工技术   9888篇
技术理论   3篇
综合类   8373篇
化学工业   7997篇
金属工艺   8096篇
机械仪表   8022篇
建筑科学   8246篇
矿业工程   4833篇
能源动力   3333篇
轻工业   4052篇
水利工程   2803篇
石油天然气   4489篇
武器工业   939篇
无线电   12370篇
一般工业技术   11085篇
冶金工业   4542篇
原子能技术   1182篇
自动化技术   6919篇
  2024年   174篇
  2023年   1079篇
  2022年   1980篇
  2021年   3038篇
  2020年   2770篇
  2019年   2431篇
  2018年   2420篇
  2017年   2986篇
  2016年   3377篇
  2015年   3652篇
  2014年   5530篇
  2013年   5625篇
  2012年   6471篇
  2011年   7416篇
  2010年   5585篇
  2009年   5551篇
  2008年   5345篇
  2007年   6315篇
  2006年   5658篇
  2005年   4762篇
  2004年   3954篇
  2003年   3408篇
  2002年   2917篇
  2001年   2499篇
  2000年   2140篇
  1999年   1873篇
  1998年   1471篇
  1997年   1257篇
  1996年   1081篇
  1995年   930篇
  1994年   757篇
  1993年   549篇
  1992年   467篇
  1991年   351篇
  1990年   282篇
  1989年   268篇
  1988年   182篇
  1987年   124篇
  1986年   93篇
  1985年   58篇
  1984年   72篇
  1983年   30篇
  1982年   42篇
  1981年   26篇
  1980年   27篇
  1979年   30篇
  1975年   9篇
  1964年   12篇
  1959年   13篇
  1955年   13篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
71.
The Fe−Ni−TiO2 nanocomposite coatings were electrodeposited by pulse frequency variation. The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies. By increasing the pulse frequency from 10 to 500 Hz, the iron and TiO2 nanoparticles contentswere increased in expense of nickel content. XRD patterns showed that by increasing the frequency to 500 Hz, an enhancement ofBCC phase was observed and the grain size of deposits was reduced to 35 nm. The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO2 nanoparticles into the Fe−Ni matrix (5.13 wt.%). Moreover, the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.  相似文献   
72.
Reactive oxygen species (ROS) plays a key role in the pathogenesis of primary open-angle glaucoma (POAG), a chronic neurodegenerative disease that damages the trabecular meshwork (TM) cells, inducing apoptosis of the retinal ganglion cells (RGC), deteriorating the optic nerve head, and leading to blindness. Aqueous humor (AH) outflow resistance and intraocular pressure (IOP) elevation contribute to disease progression. Nevertheless, despite the existence of pharmacological and surgical treatments, there is room for the development of additional treatment approaches. The following review is aimed at investigating the role of different microRNAs (miRNAs) in the expression of genes and proteins involved in the regulation of inflammatory and degenerative processes, focusing on the delicate balance of synthesis and deposition of extracellular matrix (ECM) regulated by chronic oxidative stress in POAG related tissues. The neutralizing activity of a couple of miRNAs was described, suggesting effective downregulation of pro-inflammatory and pro-fibrotic signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), transforming growth factor-beta 2 (TGF-β2), Wnt/β-Catenin, and PI3K/AKT. In addition, with regards to the elevated IOP in many POAG patients due to increased outflow resistance, Collagen type I degradation was stimulated by some miRNAs and prevented ECM deposition in TM cells. Mitochondrial dysfunction as a consequence of oxidative stress was suppressed following exposure to different miRNAs. In contrast, increased oxidative damage by inhibiting the mTOR signaling pathway was described as part of the action of selected miRNAs. Summarizing, specific miRNAs may be promising therapeutic targets for lowering or preventing oxidative stress injury in POAG patients.  相似文献   
73.
高阶表面结构刚挠结合印制电路板集合了混压设计,不对称设计等特点,且挠性板在外层,导致开窗处高度差较大,这一特点给制作增添了较大难度。本文选取此类典型刚挠结合板产品,分享部分关键制作技术。  相似文献   
74.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
75.
Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.  相似文献   
76.
77.
《Ceramics International》2021,47(21):30439-30447
Bismuth titanate (Bi4Ti3O12, BIT) exhibits a high Curie temperature and anisotropic electrical performance owing to its layered perovskite structure, and hence, it is an important ferroelectric material for high-temperature piezoelectric applications. It is crucial to understand the effects of the anisotropy in BIT-based ferroelectrics for developing novel high-temperature piezoelectric materials. In this study, a highly textured BIT ceramic was fabricated using the tape-casting technique from highly grain-oriented BIT platelets prepared by the molten salt method. The textured BIT ceramic showed a dense microstructure and high grain orientation along the (00l) plane with a texturing degree F00l = 0.86. It exhibited significant anisotropy in the electrical properties along the directions parallel and perpendicular to the axis of the tape-casting plane. Double ferroelectric hysteresis PE loops and normal ferroelectric PE loops were observed in the parallel and perpendicular samples, respectively. In addition to the layered crystal structure and domains, the anisotropy in the arrangement of the oxygen vacancy defects and their transport in the structure led to a significant anisotropy in the ferroelectric properties of the textured BIT ceramics. This work demonstrates the anisotropic arrangement of the oxygen vacancy defects and its effect on the electrical properties of high-temperature bismuth layer-structured ferroelectrics.  相似文献   
78.
With excellent specific capacity, superior cycle stability, safety and strong practical, Nb2O5 has been considered as one of the prospective anode materials for lithium-ion batteries (LIBs). However, current study suggests that Nb2O5 electrode materials for LIBs still face the vital issues of low electrical conductivity and poor rate performance. Therefore, carbon-coated TT-Nb2O5 materials are designed and synthesized through solid state method in this work, which present high specific capacity (228 mA h g?1 at 0.2C), satisfactory rate properties (107 mA h g?1 at 20 C). The outstanding electrochemical property can not only give the credit to the pseudocapacitance effect of TT-Nb2O5, but also attribute to introduction of carbon. The homogeneous carbon-coated materials enhance the electrical conductivity, increase the electron transmission speed and alleviate particle crushing. This research not only offers a new method for preparing excellent electrode materials, but also provides a kind of excellent anode material with prospective application for LIBs.  相似文献   
79.
Water-deficit stresses such as drought and salinity are the most important factors limiting crop productivity. Hence, understanding the plant responses to these stresses is key for the improvement of their tolerance and yield. In this study M. truncatula plants were subjected to 250 mM NaCl as well as reduced irrigation (No-W) and 250 g/L polyethylene glycol (PEG)-6000 to induce salinity and drought stress, respectively, provoking a drop to −1.7 MPa in leaf water potential. The whole plant physiology and metabolism was explored by characterizing the stress responses at root, phloem sap and leaf organ level. PEG treatment led to some typical responses of plants to drought stress, but in addition to PEG uptake, an important impairment of nutrient uptake and a different regulation of carbon metabolism could be observed compared to No-W plants. No-W plants showed an important redistribution of antioxidants and assimilates to the root tissue, with a distinctive increase in root proline degradation and alkaline invertase activity. On the contrary, salinity provoked an increase in leaf starch and isocitrate dehydrogenase activity, suggesting key roles in the plant response to this stress. Overall, results suggest higher protection of salt-stressed shoots and non-irrigated roots through different mechanisms, including the regulation of proline and carbon metabolism, while discarding PEG as safe mimicker of drought. This raises the need to understand the effect at the whole plant level of the different strategies employed to apply water-deficit stress.  相似文献   
80.
Sarcopenia is the loss of skeletal muscle mass and function with advancing age. It involves both complex genetic and modifiable risk factors, such as lack of exercise, malnutrition and reduced neurological drive. Cognitive decline refers to diminished or impaired mental and/or intellectual functioning. Contracting skeletal muscle is a major source of neurotrophic factors, including brain-derived neurotrophic factor, which regulate synapses in the brain. Furthermore, skeletal muscle activity has important immune and redox effects that modify brain function and reduce muscle catabolism. The identification of common risk factors and underlying mechanisms for sarcopenia and cognition may allow the development of targeted interventions that slow or reverse sarcopenia and also certain forms of cognitive decline. However, the links between cognition and skeletal muscle have not been elucidated fully. This review provides a critical appraisal of the literature on the relationship between skeletal muscle health and cognition. The literature suggests that sarcopenia and cognitive decline share pathophysiological pathways. Ageing plays a role in both skeletal muscle deterioration and cognitive decline. Furthermore, lifestyle risk factors, such as physical inactivity, poor diet and smoking, are common to both disorders, so their potential role in the muscle–brain relationship warrants investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号